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Abstract

This paper presents an effective numerical method for solving elastic wave propagation problems in an infinite
Timoshenko beam on viscoelastic foundation in time domain. In order to use the finite element method to model the
local complicated material properties of the infinite beam as well as foundation, two artificial boundaries are needed
in the infinite system so as to truncate the infinite beam into a finite beam. This treatment requires an appropriate
boundary condition derived and applied on the corresponding truncated boundaries. For this purpose, the time-
dependent equilibrium equation of motion for beam is changed into a linear ordinary differential equation by using the
operator splitting and the residual radiation methods. Simultaneously, an artificial parameter is employed in the der-
ivation. As a result, the high-order accurate artificial boundary condition, which is local in time, is obtained by solving
the ordinary differential equation. The numerical examples given in this paper demonstrate that the proposed method is
of high accuracy in dealing with elastic wave propagation problems in an infinite foundation beam.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The infinite beam on elastic foundation has a sound background in civil engineering, such as railroad
track system, highway and airfield pavements, and so forth. Considerable research has been conducted to
investigate the response of infinite foundation beam subjected to dynamic loads. The Winkler model is
usually adopted for foundation due to its simple form, while a relative realistic model is the two-parameter
Winkler—Pasternak model (Feng and Cook, 1983). The Winkler foundation including material damping is
another more practical model for dynamic loading cases. To model the infinite beam, there are two sim-
plified beam theories: the Bernoulli-Euler and the Timoshenko theories (Hu, 1984). Including the one- or
two-parameter model of foundation, the Bernoulli-Euler beam theory has usually been used to investi-
gate wave propagation in an infinite elastic beam resting on various foundations. Due to its simpler
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mathematical form, some analytical solutions are available for the homogeneous infinite beam on various
foundations to dynamic loads (Kenney, 1954; Stadler and Shreeves, 1970; McGhie, 1990; Sun, 2001).
However, only the flexural wave could propagate in the Bernoulli-Euler beam, whereas the shear wave
would be ignored. This drawback limits the application of the Bernoulli-Euler beam theory only to motion
where wavelength is larger compared to the height of the beam. Due to the wavelengths generated by most
dynamic loads, especially the impulse loads, can be expected as the same order as lateral dimensions of the
beam, it is almost necessary to use the Timoshenko beam theory in contrast to the Bernoulli-Euler theory
to model the infinite beam on elastic foundation (Crandall, 1957; Achenbach and Sun, 1965; Wang and
Gagnon, 1978; Felszeghy, 1996a,b; Billger and Folkow, 1998; Folkow et al., 1998; Chen et al., 2001). It
is noted that almost all of the available closed-form solutions are derived on the technique of integral
transforms. Therefore, only are the ideal homogeneous beam and foundation models considered in details.
For the practical engineering problems, it is necessary to develop the numerical methods to simulate the
infinite beam as well as foundation with inhomogeneous and complicated character.

Up to now, the numerical methods, such as finite difference and finite element method, are seldom used
to investigate the wave propagation in the infinite beam on elastic foundation. The reason may be that these
numerical methods are domain-dependent, that is, the computation domain must be finite. Due to the
powerful ability of the finite element method to inhomogeneous materials and nonlinear problems, it is in
urgent need to develop the time-domain numerical techniques based on the finite element method to model
the wave propagation in infinite foundation beam. Wang et al. (1984) investigated the traveling wave in a
Timoshenko beam on elastic foundation to dynamic loads by the method of direct analysis. The model used
in the direct analysis method is to truncate the infinite beam into a finite beam with fixed boundary con-
ditions on the truncated boundaries. This treatment requires that for the long-term response analysis of the
concerned region, the length of the beam may become extensive long to prevent the response of the con-
cerned region from being contaminated by the reflected waves on the truncated boundaries. To reduce the
size of the computational domain, the truncated boundary should be taken near the concerned domain. For
this purpose, it is necessary to develop and use the appropriate truncated boundary condition, which
represents the effect of the truncated semi-infinite beam on viscoelastic foundation (Givoli, 1992). Since the
local boundary conditions, which are local in time, space or in both time and space, involve simple ex-
pressions for artificial boundary, they usually result in a significant reduction in computer efforts. However,
some spurious waves at the truncated boundary may degrade the accuracy and robustness of the numerical
procedures available, especially when the truncated boundary is close to the dynamic source. If an exact
boundary condition is applied on the truncated boundary, a high accurate numerical solution can be ob-
tained and the total number of elements can be reduced significantly. However, the exact artificial boundary
conditions, such as the mentioned closed-form solutions, are too complicated to be implemented numeri-
cally due to the involvement of special functions and convolution integrals (Tsynkov, 1998; Givoli, 1999).
Recently, a new class of high-order accurate artificial boundary conditions has been proposed and studied
(Grote and Keller, 1995, 1996; Hagstrom and Hariharan, 1998; Thompson and Huan, 1999; Huan and
Thompson, 2000; Thompson et al., 2001; Givoli, 2001; Givoli and Patlashenko, 2002; Liu and Xu, 2002).
Since the high-order artificial boundary conditions are local in time, nonlocal on the truncated boundaries
for transient wave problems, they can be easily implemented into a conventional finite element method,
without affecting the sparse structure of the stiffness and mass matrixes (Thompson and Huan, 2000). Up to
now, the high-order accurate artificial boundary conditions are available for scalar wave propagations in
two-dimensional or three-dimensional infinite domain. The time-dependent artificial boundary conditions
for elastic wave problems are obtained only for layered domain (Kausel, 1994; Guddati and Tassoulas,
1999; Park and Tassoulas, 2002) and full three-dimensional domain (Grote and Keller, 2000). However, the
time-dependent artificial boundary conditions for infinite beam on viscoelastic foundation are not forth-
coming. Therefore, a major need exists for a high-order accurate time-dependent artificial boundary
condition for infinite beam on viscoelastic foundation.
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In this paper, a transient elastic wave propagation problem is investigated in an infinite Timoshenko
beam on viscoelastic foundation. In order to use the finite element method to simulate the traveling wave in
infinite beam, two artificial boundaries are introduced to truncate the original infinite beam into one finite
and two semi-infinite beams. By using the operator splitting method, the time-dependent partial differential
equation is changed into an ordinary differential equation. In addition, an artificial parameter with respect
to elastic wave velocities is used to obtain the high-order accurate solution in a rigorously mathematical
manner. The rest of the paper is arranged as follows. The governing partial differential equation and the
corresponding initial-boundary conditions for an elastic wave propagation problem in an infinite Timo-
shenko beam on viscoelastic foundation are presented first and followed by the operator splitting method
and auxiliary functions used to derive the high-order accurate artificial boundary conditions on the trun-
cated boundaries of a semi-infinite foundation beam. And then the implementation of the obtained artificial
boundary conditions in the finite element analysis is discussed. In the numerical example section, the ac-
curacy and convergence of the proposed method are examined by two examples. Some discussions and
conclusions are drawn in the final section.

2. Problem statement

An infinite elastic beam on viscoelastic foundation is considered in this paper, whose motion is assumed
to be in-plane (shown in Fig. 1). The infinite beam is taken as Timoshenko beam, while the viscoelastic
foundation beneath the infinite beam is modeled by the continuous springs and dashpots uniformly dis-
tributed along the beam length. The infinite beam as well as foundation is divided into one finite and two
semi-infinite regions by introducing two artificial boundaries, x = x; and x = x,, respectively. When sub-
jected to a dynamic load, the finite beam on viscoelastic foundation which may have inhomogeneous and
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Fig. 1. Infinite beam on viscoelastic foundation models.
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complicated material properties, is simulated by the finite element method, while the semi-infinite beam on
viscoelastic foundation without direct loading excitation, which is homogeneous material, can be simulated
using the high-order accurate boundary condition. The main objective of this study is to determine the
high-order accurate boundary condition, which is a relationship between displacement and resultant on the
truncated boundary. For this purpose, it is necessary to consider the elastic wave propagation problem in
semi-infinite beam on viscoelastic foundation. Due to the similarity between these two semi-infinite models,
we will focus on the derivation of the high-order accurate boundary condition on the truncated boundary
of x = x, below. The forces and the deformations of an infinitesimal beam element on viscoelastic foun-
dation are shown in Fig. 2. The motion equilibrium can be given by (Hu, 1984)

aa—fz —pAb — dv — kv (1)
aZQ‘FpJ@—d]@—k]H (2)

where v and 0 represent the beam deformation and the bending rotation, respectively; p, 4, J, d, d;, k and k,
represent the mass density, the area of the cross-section, the second moment of area of the beam section, the
viscous-damping coefficients, the spring constants, respectively; QO and M represent the shear force and the
bending moment, respectively.

The shear force Q and the bending moment M can be expressed by the corresponding deformations as

O(x,t) = pdGp (3)
o0
M(x,t) = EJ — 4
(1) =B o )
where f§ represents the shear angle, u shear factor, and £ and G the Young’s and shear moduli of the beam,
respectively.
The relationship between the bending and shear angles is given by
v
0= & +B (5)
Substitutions of Egs. (3)-(5) into Egs. (1) and (2), respectively, yield
% o0
v O .
,uAGax2 uAGa)C kv = pAv + dv (6)
y
%
Q
pIO +c0+k06 M+E;£dx
X
" T
v d
PAV + cv + kv Q+a€dx

Fig. 2. Forces of an infinitesimal foundation beam element.



T. Liu, Q. Li | International Journal of Solids and Structures 40 (2003) 3211-3228 3215

EJ@ﬂLAG@—( G+k)0=pJ0+d0 (7)
axz ax tu‘A 1 = P 1
Written in the matrix form, Egs. (6) and (7) can be expressed as
’u T du ’u du
EO@""(El_El)a_Ezu—MO@‘FE}E (8)
where
u=1[v 0] (9a)
_luga 0
Eo = 0 EJ] (95)
0 0
E]— _—'LLGA 0:| (9C)
[k 0
E, = 10 uGA+ kl] (9d)
_|p4 0
M, = [ ; N] (%)
d 0
Es = [0 g } (9f)

Eq. (8) turns out to be the equation that applies to the semi-infinite beam on viscoelastic foundation. It is
noted that both Ey and M, are diagonal and positive definite matrixes.

The motion of the semi-infinite beam on viscoelastic foundation is assumed to start from rest. Therefore,
the initial conditions are

0
u(x,0) = = (x,0) =0 (r>x) (10)
The displacement and velocity on the boundary of the semi-infinite beam are, respectively,
u(.Xz,f) :ll()(t) (11)
ou(xy, t .
(a; )_ i (7) (12)

where uy(¢#) and uy(¢) are the transient responses of the finite beam region on the truncated boundary
obtained by the finite element method.

Now, the resultant forces corresponding to all the degrees of freedom of the boundary are addressed.
Recalling Egs. (3)-(5), the resultant force vector on the boundary is written as

ou
R=-Ey- —Eu (13)
For the elastic wave propagation in a semi-infinite beam on viscoelastic foundation, a relationship among
displacement wuy(z), velocity wy(¢) and resultant force R(¢) on the boundary is needed. This requires the
derivative, 0u/dx in Eq. (13), which must be represented by the corresponding responses of semi-infinite
beam on truncated boundary.
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3. The residual radiation method

The employment of the residual radiation method (Liu and Xu, 2002) is to transfer Eq. (8) into a linear
first-order ordinary differential equation by factorizing the partial differential equation and introducing a
set of residual radiation functions. Due to the positive definition of E, and My, Eq. (8) can be rewritten as

0%v, , 0%V v v
where
vo = Nu (15a)
N = diag(/uGA4,VEJ) (15b)
A? = diag( 2.2 1
dlag(,uG’E) (15¢)

B 0 JUGAJET
D= {_m 0 ] (15¢)

: d d
F= — 15f
dlag(yGA’EJ) (15f)
Obviously, the left-hand side of Eq. (14) can be factorized as follows:
0 0 0 0 B vy vy
The partial differential operators
0 0 0 0

in Eq. (16) represent the incoming and outgoing waves, respectively. Introducing an auxiliary vector v, into
Eq. (16) yields the following equations:

aV() aV() o

a E—Vl (17)
6v1 6v1 o 1

a—AE—EVO—I—DVl—HVO (18)

where
H=DA-F (19)
Uy
7] _ 1 . .
V; =3 (j>0,i=0,1,2,...) (20)

It is clear that Eq. (17) is similar to the radiation boundary conditions. If the function v, satisfies the
standard wave equation, i.e., D = 0, E = 0 and H = 0, then v; = 0, so that all the outgoing waves will travel
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through the artificial boundary without any residual. However, for elastic wave propagation in semi-infinite
beam, matrixes D, E and H do not vanish, the auxiliary function v, exists in the systems, which represents
the residual radiation of function vy.

To obtain a higher-order accurate numerical solution, it is important to determine the first-order residual
function v, accurately. Followed is an efficient method proposed to determine the lower residual functions
through the higher ones. As an example, the second order of radiation vector v, is introduced to obtain v, as
follows:

ov ov

E)_xI a—; =V, (21)
where X = ¢l is an introduced diagonal matrix, I, is a 2-order identity matrix and parameter ¢ is employed
to reduce the radiation residual, and can be evaluated ¢ = § (A4, + 4,) for instance. Application of the
incoming partial differential operator (0/0x) — A(0/0t) to Eq. (21) yields

0 0 0 0 0 0
(a—Aa—t)Vz— (a_x_Aa_t>(a_x+26_t)VI (22)
Substitution of Eq. (18) into Eq. (22) with exchange of operators yields
0 ) ) 0 .
<a—A&>vz— (a+25>(Evo—|—Dv1 — Hy, ") (23)

Obviously, the matrix X is an exchangeable matrix, that is, XE = EX, XD = DX and so forth. Hence,
accounting for Eq. (17), the first term in the right-hand side of Eq. (23) can be rewritten as

0 0 o
(a + Ea_t) (Evo) = Ev; + E(Z — A)y, (24)
Likewise, the third term in the right-hand side of Eq. (23) yields
0 0 _ _ _
<a+25)(—Hv01):—Hvll —H(Z - A)v,? (25)
Therefore, a pair of partial differential equations are obtained as
aVl 6v1 B
a + EE =V (26)
6v2 6v2 1 1 )
o AE =Evi+E(X - A)vy, +Dv, —Hv;" —H(Z - A)y, (27)
X

In the same way, the following equations with respect to the third residual radiation function v; are ob-
tained:

aVZ aVZ o
PR T >
ov3 ov3 _ 1 2.2 -1 -2 2.3
G__AE_ Ev, +EX - A)vi +EX—-A)v,;"+Dv; —Hv, —HXE-A)v;" —H(Z - A)%Y,
x
(29)

Likewise, the following general factorizing forms with respect to the (n + 1)th residual radiation v, can be
obtained:
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ov,, o, B

ax+E§—V,,+1 (nfl,Z,...,N) (30)

Vi1 _Aav,m _E L ((E—A)iv’i.) u n (- A)vi N4Dv (n=1,2,...,N) (31)
ax Gt ;:0 n—i ;:0 n ) ) )

where N is the highest order of the auxiliary function. The correctness of Eqgs. (30) and (31) can be proven
using the inductive method.

Still is a difficulty to implement the above factorizing partial differential equations into any numerical
procedure due to the presentation of the spatial derivatives and the high-order temporal derivatives. The
spatial derivatives can be eliminated from the above equations by subtracting Eq. (18) from Eq. (21) as
follows:

0
(E+A) avl — v, — Evg — Dy, + Hy;’ (32)
Similarly, the second ordinary differential equation can be obtained as
0
Z+ A)g =v;—Ev; —E(Z— A)v,' —Dv, + Hv;' + H(Z — A)v,? (33)

Likewise, a general form of the ordinary differential equation can be written as

n—1
(Z+A)a—_vn+1 EZ (E=A)Y ) +HY (E-A)V,5) =Dy, (n=12,...,N) (34)

i=0

To reduce the high-order temporal derivatives in the above ordinary differential equations, the notation v;”
in Eq. (20) is extended as

v :/‘ // v;drydry---dt; (j=0,i=0,1,2,3,...) (35)
0 o Jo
Using the above notions, Eq. (32) can be rewritten as
1
(Z+A) % - % = —Evy — Dv, + Hy,' (36)

Integrating Eq. (33) with respect to time once, the second ordinary differential equation is expressed as

1 2
Ov, Ov;

E+A) 5 -5 = —Ev; — E(X — A)vo — Dv, + Hv, + H(Z — A)v," (37)
Likewise, integrating the nth Eq. (34) with respect to time n — 1 times leads to the follows:
ov,”' v,

b)) A n “intl

E A
n—1 n—1

=-E) (E-A)V ) +HY (E-A)Vi2)-Dvi' (n=12,...,N) (38)

i=0 i=0

Eqgs. (36)—(38) are all first-order temporal ordinary differential equations for the related residual radiation

functions. The unknown functions are vi,v,v3,...,v""! and v},v3,v3i,...,v", while the known conditions

’n

are vy and v, which are expressed in Eqgs. (10)—(12), on the truncated boundary x = x,. Hence, Egs. (36)—
(38) can be rewritten in the matrix form as
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g S "

where w; = [v; v) v ... v'! ]T andw, = [v] v v ... vz]T. Matrixes Ay, A;, A, and vector q
have the following block forms, respectively:
[E+A -1
T+A I
Ay = T+A I (40a)
L E + A nxn
- p -
H(Z - A) -D
H(Z-A)P  HE-A) -D
3 2
A= | HE=A)' HE-A)’ HEZ-A) -D (40b)
H(ZX-A)"’ HE-A)""* e H(Z - A) -D
[HEZ—-A)"> HE-A)"" e H(EZ-A)® HEZ-A) -DJ,,
_ 0 -
-E 0
E(X - A)' —E 0
2
A | BE-4) EX-A) -E 0 (400)
EZ-A)"" EEXZ-A)"" - E(X-A) -E 0
LEE-A)"" EEZ-A)""* . E(X—-A)’ EEZ-A)'" -E 0],
—EV() + HVQ
—E(Z — A)vo + H(Z — A)¥y
q=| —EX-A)v+H(E-A) (40d)

—EEZ-A)" vy +HE -A)""¥

n

Furthermore, the linear system (39) can be rewritten as the following standard ordinary differential
equation:

dw 0

P Aw +w (41)
where

w=[w wl, (42a)

W =[A,'q 0], (42b)

-1 -1
A— [AO A A, Az} (42¢)
2nx2n
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From Eq. (10), the initial condition for w is obtained as
w=[0 0 --- 0] (43)

2n
Using the explicit second-order Adams—Bashforth algorithm (James et al., 1993), the numerical solution to
Eq. (41) can be expressed as follows:

W(tir) = w(t) + % [BAW(%) + W (1)) — (AW(te—1) + W (t1))] (44)

where At is the time step, k is the number of time step and #, = kAt
Once the residual radiation functions are solved from Eq. (44), then Eq. (17) can be rewritten as

aVO aVO
a(tk) = —Aa(lk) + v (lk) (45)

Multiplying the above expression by matrix N and substituting it into Eq. (13), the force at the boundary of
semi-infinite foundation beam can be obtained as follows:

R(%) = Co%l;(tk) —Eju(s) — Nvi (1) (46)

where Cy = NANT is a symmetric and positive definite matrix. Eq. (46) is the relationship between the force
and displacement at the boundary, i.e., the discrete artificial boundary conditions for transient elastic wave
propagation in the semi-infinite beam on viscoelastic foundation. Obviously, the above boundary condition
is local in time since it only contains the displacement and velocity during two previous successive time
instants (see Eq. (44)).

If only the first term in the right-hand side of Eq. (46) is considered, the viscous damping boundary
condition is obtained as follows:

R(#) = Cy % () (47)

4. Finite element formulation

The proposed high-order accurate artificial boundary condition can be straightforwardly implemented in
the finite element analysis (Thompson and Huan, 2000). Traditionally, the finite element discretized for-
mulation of the Timoshenko beam on viscoelastic foundation can be expressed as

My + Cy + Ky =f (48)

where M is the global mass matrix, C the global viscous and radial damping matrix, K the global stiffness
matrix, and f the global force vector due to the artificial boundary and other contributions. y, y and y are
the global acceleration, velocity and displacement vectors, respectively. These global property matrixes and
vectors can be obtained by assembling all of the element matrixes (Przemieniecki, 1968) and vectors in-
cluding those of the artificial boundary conditions. The element property matrixes can be expressed as

M° = diag(pAl/2 pJl/2 pAl]2 pJl/2) (49a)

C = diag(dl/2 di1/2 dIj2 d1)2) (49b)
12 6/ —12 6!/

KE:P(lEiqﬁ) b (4:?)[2 o (2:5)12 (49¢)

6 (2-®)P -6l (4+ )P
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K¢ = diag(kl/2 kil/2 kI/2 kil/2) (49d)

where / is the length of a beam element and @ = (12EJ)/(uGAI?), C{ is the viscous damping matrix of a
foundation element, Ki and Kf are the stiffness matrixes of a Timoshenko beam element and a elastic
foundation element, respectively.

Due to that the high-order accurate boundary condition needs both the displacements and velocities on
the truncated boundary, the dynamic equation (48) is rewritten in a form of state space as follows:

[i] - [_J_IK Ml—lc] m + [MQIJ (50)

This linear system, Eq. (50), can be solved by the same numerical method as Eq. (41). Furthermore, Eq. (50)
may be decoupled with Eq. (41) on the artificial boundary, it is possible to solve Egs. (41) and (50) in an
alternative manner, until the final time instant of interest is reached in the finite element analysis.

5. Numerical examples

The performance of the proposed high-order accurate artificial boundary condition is illustrated through
some examples for time-dependent elastic wave propagation problems in infinite and semi-infinite beam on
viscoelastic foundation. The first one is a semi-infinite homogeneous beam overlying on the viscoelastic
foundation, and the second is a semi-infinite beam on the viscoelastic foundation with partly inhomo-
geneous properties. Both examples are performed in time domain in order to illustrate the efficiency of the
present method. The exact solutions used for comparison are obtained from the consistency boundary
method (Kausel et al., 1975).

5.1. A semi-infinite homogeneous beam on viscoelastic foundation

The transient response of a homogeneous beam on viscoelastic foundation (as shown in Fig. 3) is an-
alyzed using the proposed high-order accurate nonreflecting boundary condition. Followed is the material
parameters, 4 = 0.25 x 1.0 m?, 7 = 0.02083 m*, E = 4.29 x 10° kNm?, y = 0.2, p = 2.35 x 10° kg/m?, ky =
3.388 x 10* kKN/m?, kjg = 4.423 x 10* kN, d, = 282 kN's/m?, d,; = 93 kN's, « = 1.0 and ¢ = 0.1. The k, and
ki are the standard stiffness of the foundation, while stiff ratio is defined as o« = k/ky = k1 /kjo. Likewise, the
d. and d,; are the critical damps of the foundation and damping ratio is defined as ¢ = d/d. = d,/d,;. The
corresponding dilatation and shear wave velocities are ¢, = 2961 m/s and ¢, = 1745 m/s, respectively. For
the purpose of demonstrating the correctness and accuracy of the current truncated boundary condition,
the system is considered under an in-plane square sine impulse disturbance (deflection or rotation) as
follows:

.2
£(1) = {(s){r(l) (xT/2) 0<T<20 "

where T = c¢¢t/h is dimensionless time, and % the height of beam.

|:| 025x 1.0

0 Vv
Q T Beam —wb

Viscoelastic foundation

Fig. 3. Semi-infinite Timoshenko beam on viscoelastic foundation.
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The time step in the analysis was chosen in such a way that the least error was obtained in approximating
the loading function, also the time step must be less than the corresponding maximum value, which satisfies
the requirement for stable integral conditions. In this particular example, the dimensionless time step used
is 0.005. The total integrating time is 10.

The first case considered in this subsection is to investigate the convergence of the high-order accurate
nonreflecting boundary condition. The number of residual radiation function in the following analysis is
used as n = 5, 10 and 20, respectively. The input deflection or rotation at the boundary is prescribed by Eq.
(51), i.e., when the deflection is given, the rotation is zero and vice versa. The resultant forces at the
boundary of the semi-infinite beam are shown in Fig. 4 for various cases. Obviously the longer is the
numerical simulation time, the more the auxiliary residual functions are required to obtain a high accurate
solution. It can be seen that the numerical solution has excellent agreement with the exact solution in the
case of n = 20. Nevertheless, this indicates that the present artificial boundary condition is a very accurate
artificial boundary for solving elastic wave propagation problems in a foundation beam, if the order of the
residual radiation function used is high enough in the numerical analysis.

Furthermore, the finite element method with the present high-order accurate boundary condition is used
to solve the dynamic responses in semi-infinite foundation beam subjected to impulse loads. The finite
element model for foundation beam is shown in Fig. 5, whose element size is / = 1 m. The material
parameters are exactly the same as those in the first case. In order to examine the effect of location of the
truncated boundary on the numerical results, four different region sizes, namely L = 5, 10, 15, and 30 m, are

Bact (®)
£ 0.4 ° n=
= Z a n=10
~ = a
< ~ 0.2 X n=20 oy ab
~ o ° o 000 A
o s ° oo o
g = 000%g XN s
o o 0 XX %
5 £ a 4 o
5 S °
o = ° a a
& 2 0.2 o SN °
o B g ° a o
S g °o °
-]
-0.4
-1.5 -0.6
0 2 4 6 8 10 0 2 4 6 8 10
Dimensionless Time T = ¢t /h Dimensionless Time T = cst/h

Shear Force Q/cs*(kN)

Dimensionless Time T = cst/h Dimensionless Time T = cst/h

Fig. 4. Comparison of the numerical solutions with the exact solutions due to the different order of residual radiation functions
(n =5,10,20): (a) shear force at boundary due to lateral deflection at boundary; (b) bending moment at boundary due to lateral
deflection at boundary; (c) shear force at boundary due to rotation at boundary; (d) bending moment at boundary due to rotation at
boundary.
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Fig. 5. Finite element model for a semi-infinite homogeneous Timoshenko beam on viscoelastic foundation.

considered in the finite element analysis. The foundation beam is subjected to an impulse loads described in
Eq. (51). Fig. 6 shows the effect of the artificial boundary locations on the dynamic responses at the point A.
The numerical solutions resulting from both the free boundary conditions and fixed boundary conditions
on the truncated boundary are also shown in the corresponding figures (marked by (F) and (F’)). It is
obvious that even though the size of beam modeled by the finite element is very small, a very accurate
numerical solution can be obtained with the high-order accurate boundary conditions (marked by (H)).
However, there exist significant differences between the results of the free boundary conditions and those of
the high-order boundary conditions imposed on the truncated boundary, while there exists a consistency
between the results of a large size of finite element model with the fixed boundary conditions and those of
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Fig. 6. Effect of truncated boundary location on the response of beam subjected to impulse load (F: free boundary conditions; F': fixed
boundary conditions; H: high-order accurate boundary conditions): (a) deflection at node A due to lateral force at node B; (b) rotation
at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation at node A due to
bending moment at node B.
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Fig. 7. Finite element model for a semi-infinite inhomogeneous Timoshenko beam on viscoelastic foundation.

the high-order boundary conditions imposed on the truncated boundary. This further indicates that the
proposed nonreflecting artificial boundary is accurate enough to simulate the elastic wave propagation
problem in infinite beam on viscoelastic foundation.

5.2. A partly inhomogeneous semi-infinite beam on viscoelastic foundation

A partly inhomogeneous semi-infinite beam with different thickness overlying on the viscoelastic
foundation is shown in Fig. 7. The inhomogeneous character makes it difficulty to get an analytical solution
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Fig. 8. Effects of viscous damping on responses of the beam subjected to an impulse load: (a) deflection at node A due to lateral force at
node B; (b) rotation at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation at
node A due to bending moment at node B.
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(Felszeghy, 1996a,b). However, there is no difference between the methods for the inhomogeneous foun-
dation beam problem and the aforementioned homogeneous problem when using the current proposed
numerical method. The truncated boundary is imposed on the bi-material interface of the inhomogeneous
foundation beam. The finite region is modeled by finite element with size of 1 m, while the semi-infinite
homogeneous part is represented by high-order accurate boundary condition. Parameters used in finite
element model are: 4 = 0.3 x 1.0 m?, 7 = 0.025 m*, £ =4.29 x 10° kNm?, y = 0.2, p = 2.35 x 10° kg/m?,
ko = 4.066 x 10* kKN/m?, ko = 5.307 x 10* kN, d. = 339 kNs/m?, d.;, = 112 kN's, « = 1.0, those for the
semi-infinite homogeneous foundation beam are the same as in the first example.

The first case considered in this subsection is to examine the effect of the viscous damping of foundation
on the numerical results. Four damping values, £ = 0.0, 0.2, 0.5 and 1.0, are considered in the finite element
analysis. The system is still subjected to the impulse load described in Eq. (51). The time step and the
integrating time used are the same as those in the previous numerical example. Fig. 8 shows the effect of the
viscous damping on the transient responses of the inhomogeneous semi-infinite foundation beam. It is clear
that the damping obviously affects the transient response of the system. This does demonstrate that the
current high-order nonreflecting artificial boundary condition is very effective for solving elastic wave
propagation problems in the inhomogeneous infinite beam on viscoelastic foundation.

Alternatively, with a fixed viscous damping (¢ = 0.2), four values of « = 0.1,1.0, 10,50 are used to ex-
amine the effect of the stiffness of foundation on the numerical results. Fig. 9 shows the effect of the stiffness
of foundation on the transient responses of the inhomogeneous semi-infinite foundation beam. Clearly, the
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Fig. 9. Effects of foundation stiffness on responses of the beam subjected to an impulse load: (a) deflection at node A due to lateral force
at node B; (b) rotation at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation
at node A due to bending moment at node B.
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related numerical results show that the foundation stiffness have significant effects on the transient res-
ponses of the semi-infinite foundation beam, in particular, the soft foundation case.

Finally, the inhomogeneous semi-infinite foundation beam subjected to a resonant load is considered to
obtain the long time response of the system. The following resonant load is used in the corresponding
numerical analysis:

f(T)=sin(nT) 0<T<40 (52)

Except for « = 0.1 and ¢ = 0.2, the other material parameters are exactly the same as those in the previous
cases of this subsection. The time step and the integrating time used are the same as those in the previous
numerical example. Numerical results at different locations are compared with the results, which are ob-
tained by a large size of foundation beam mode with, L = 25 m and the fixed truncated boundary condition
(marked by (C)). Fig. 10 shows the corresponding responses at locations A and C of the foundation beam.
It can be observed that even for the resonant load case, the numerical results from the proposed method still
agree well with those by a large conventional finite element model with Dirichlet boundary conditions. This
demonstrates the usefulness and accuracy of the present high-order accuracy boundary conditions in
dealing with elastic wave propagation problems in semi-infinite foundation beam.
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Fig. 10. Long time responses of the foundation beam subjected to a resonant load (H: high-order accurate boundary conditions;
C: conventional finite element method): (a) deflections at node A and C due to lateral resonant force at node B; (b) rotations at node A
and C due to lateral resonant force at node B; (c) deflections at node A and C due to resonant bending moment at node B; (d) rotation
at node A and C due to resonant bending moment at node B.
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6. Conclusions

In this paper, a high-order nonreflecting artificial boundary condition is proposed to simulate the
transient elastic wave propagation in an infinite beam on viscoelastic foundation. Both the operator
splitting technique and residual radiation function are used to derive the high-order accurate artificial
boundary conditions in a rigorously mathematical manner. Those complicated convolution calculations
commonly used in other analytical and numerical methods can be avoided in the current artificial boundary
condition due to neither the fundamental solution nor the impulse response function is needed.

The proposed high-order accurate artificial boundary condition is local in time for the elastic wave
problems in foundation beam. It can be combined easily with finite element method to deal with elastic
wave propagation problems in infinite beam including viscoelastic foundation, because the context of the
artificial boundary condition is the numerical method. The performance of the proposed high-order
nonreflecting artificial boundary is illustrated by some transient elastic wave propagation problems in the
semi-infinite beam with inclusion of viscoelastic foundation. The results support that the high-order
nonreflecting artificial boundary condition proposed in this paper is accurate for solving elastic wave
propagation problems of infinite (or semi-infinite) beams on viscoelastic foundation.
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