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Abstract

This paper presents an effective numerical method for solving elastic wave propagation problems in an infinite

Timoshenko beam on viscoelastic foundation in time domain. In order to use the finite element method to model the

local complicated material properties of the infinite beam as well as foundation, two artificial boundaries are needed

in the infinite system so as to truncate the infinite beam into a finite beam. This treatment requires an appropriate

boundary condition derived and applied on the corresponding truncated boundaries. For this purpose, the time-

dependent equilibrium equation of motion for beam is changed into a linear ordinary differential equation by using the

operator splitting and the residual radiation methods. Simultaneously, an artificial parameter is employed in the der-

ivation. As a result, the high-order accurate artificial boundary condition, which is local in time, is obtained by solving

the ordinary differential equation. The numerical examples given in this paper demonstrate that the proposed method is

of high accuracy in dealing with elastic wave propagation problems in an infinite foundation beam.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The infinite beam on elastic foundation has a sound background in civil engineering, such as railroad

track system, highway and airfield pavements, and so forth. Considerable research has been conducted to

investigate the response of infinite foundation beam subjected to dynamic loads. The Winkler model is

usually adopted for foundation due to its simple form, while a relative realistic model is the two-parameter

Winkler–Pasternak model (Feng and Cook, 1983). The Winkler foundation including material damping is

another more practical model for dynamic loading cases. To model the infinite beam, there are two sim-

plified beam theories: the Bernoulli–Euler and the Timoshenko theories (Hu, 1984). Including the one- or

two-parameter model of foundation, the Bernoulli–Euler beam theory has usually been used to investi-
gate wave propagation in an infinite elastic beam resting on various foundations. Due to its simpler
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mathematical form, some analytical solutions are available for the homogeneous infinite beam on various

foundations to dynamic loads (Kenney, 1954; Stadler and Shreeves, 1970; McGhie, 1990; Sun, 2001).

However, only the flexural wave could propagate in the Bernoulli–Euler beam, whereas the shear wave

would be ignored. This drawback limits the application of the Bernoulli–Euler beam theory only to motion
where wavelength is larger compared to the height of the beam. Due to the wavelengths generated by most

dynamic loads, especially the impulse loads, can be expected as the same order as lateral dimensions of the

beam, it is almost necessary to use the Timoshenko beam theory in contrast to the Bernoulli–Euler theory

to model the infinite beam on elastic foundation (Crandall, 1957; Achenbach and Sun, 1965; Wang and

Gagnon, 1978; Felszeghy, 1996a,b; Billger and Folkow, 1998; Folkow et al., 1998; Chen et al., 2001). It

is noted that almost all of the available closed-form solutions are derived on the technique of integral

transforms. Therefore, only are the ideal homogeneous beam and foundation models considered in details.

For the practical engineering problems, it is necessary to develop the numerical methods to simulate the
infinite beam as well as foundation with inhomogeneous and complicated character.

Up to now, the numerical methods, such as finite difference and finite element method, are seldom used

to investigate the wave propagation in the infinite beam on elastic foundation. The reason may be that these

numerical methods are domain-dependent, that is, the computation domain must be finite. Due to the

powerful ability of the finite element method to inhomogeneous materials and nonlinear problems, it is in

urgent need to develop the time-domain numerical techniques based on the finite element method to model

the wave propagation in infinite foundation beam. Wang et al. (1984) investigated the traveling wave in a

Timoshenko beam on elastic foundation to dynamic loads by the method of direct analysis. The model used
in the direct analysis method is to truncate the infinite beam into a finite beam with fixed boundary con-

ditions on the truncated boundaries. This treatment requires that for the long-term response analysis of the

concerned region, the length of the beam may become extensive long to prevent the response of the con-

cerned region from being contaminated by the reflected waves on the truncated boundaries. To reduce the

size of the computational domain, the truncated boundary should be taken near the concerned domain. For

this purpose, it is necessary to develop and use the appropriate truncated boundary condition, which

represents the effect of the truncated semi-infinite beam on viscoelastic foundation (Givoli, 1992). Since the

local boundary conditions, which are local in time, space or in both time and space, involve simple ex-
pressions for artificial boundary, they usually result in a significant reduction in computer efforts. However,

some spurious waves at the truncated boundary may degrade the accuracy and robustness of the numerical

procedures available, especially when the truncated boundary is close to the dynamic source. If an exact

boundary condition is applied on the truncated boundary, a high accurate numerical solution can be ob-

tained and the total number of elements can be reduced significantly. However, the exact artificial boundary

conditions, such as the mentioned closed-form solutions, are too complicated to be implemented numeri-

cally due to the involvement of special functions and convolution integrals (Tsynkov, 1998; Givoli, 1999).

Recently, a new class of high-order accurate artificial boundary conditions has been proposed and studied
(Grote and Keller, 1995, 1996; Hagstrom and Hariharan, 1998; Thompson and Huan, 1999; Huan and

Thompson, 2000; Thompson et al., 2001; Givoli, 2001; Givoli and Patlashenko, 2002; Liu and Xu, 2002).

Since the high-order artificial boundary conditions are local in time, nonlocal on the truncated boundaries

for transient wave problems, they can be easily implemented into a conventional finite element method,

without affecting the sparse structure of the stiffness and mass matrixes (Thompson and Huan, 2000). Up to

now, the high-order accurate artificial boundary conditions are available for scalar wave propagations in

two-dimensional or three-dimensional infinite domain. The time-dependent artificial boundary conditions

for elastic wave problems are obtained only for layered domain (Kausel, 1994; Guddati and Tassoulas,
1999; Park and Tassoulas, 2002) and full three-dimensional domain (Grote and Keller, 2000). However, the

time-dependent artificial boundary conditions for infinite beam on viscoelastic foundation are not forth-

coming. Therefore, a major need exists for a high-order accurate time-dependent artificial boundary

condition for infinite beam on viscoelastic foundation.
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In this paper, a transient elastic wave propagation problem is investigated in an infinite Timoshenko

beam on viscoelastic foundation. In order to use the finite element method to simulate the traveling wave in

infinite beam, two artificial boundaries are introduced to truncate the original infinite beam into one finite

and two semi-infinite beams. By using the operator splitting method, the time-dependent partial differential
equation is changed into an ordinary differential equation. In addition, an artificial parameter with respect

to elastic wave velocities is used to obtain the high-order accurate solution in a rigorously mathematical

manner. The rest of the paper is arranged as follows. The governing partial differential equation and the

corresponding initial-boundary conditions for an elastic wave propagation problem in an infinite Timo-

shenko beam on viscoelastic foundation are presented first and followed by the operator splitting method

and auxiliary functions used to derive the high-order accurate artificial boundary conditions on the trun-

cated boundaries of a semi-infinite foundation beam. And then the implementation of the obtained artificial

boundary conditions in the finite element analysis is discussed. In the numerical example section, the ac-
curacy and convergence of the proposed method are examined by two examples. Some discussions and

conclusions are drawn in the final section.

2. Problem statement

An infinite elastic beam on viscoelastic foundation is considered in this paper, whose motion is assumed

to be in-plane (shown in Fig. 1). The infinite beam is taken as Timoshenko beam, while the viscoelastic

foundation beneath the infinite beam is modeled by the continuous springs and dashpots uniformly dis-

tributed along the beam length. The infinite beam as well as foundation is divided into one finite and two

semi-infinite regions by introducing two artificial boundaries, x ¼ x1 and x ¼ x2, respectively. When sub-
jected to a dynamic load, the finite beam on viscoelastic foundation which may have inhomogeneous and

∞ ∞

∞∞

Fig. 1. Infinite beam on viscoelastic foundation models.
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complicated material properties, is simulated by the finite element method, while the semi-infinite beam on

viscoelastic foundation without direct loading excitation, which is homogeneous material, can be simulated

using the high-order accurate boundary condition. The main objective of this study is to determine the

high-order accurate boundary condition, which is a relationship between displacement and resultant on the
truncated boundary. For this purpose, it is necessary to consider the elastic wave propagation problem in

semi-infinite beam on viscoelastic foundation. Due to the similarity between these two semi-infinite models,

we will focus on the derivation of the high-order accurate boundary condition on the truncated boundary

of x ¼ x2 below. The forces and the deformations of an infinitesimal beam element on viscoelastic foun-

dation are shown in Fig. 2. The motion equilibrium can be given by (Hu, 1984)

oQ
ox

¼ �qA€vv� d _vv� kv ð1Þ

oM
ox

¼ Qþ qJ €hh � d1 _hh � k1h ð2Þ

where v and h represent the beam deformation and the bending rotation, respectively; q, A, J , d, d1, k and k1
represent the mass density, the area of the cross-section, the second moment of area of the beam section, the

viscous-damping coefficients, the spring constants, respectively; Q and M represent the shear force and the

bending moment, respectively.

The shear force Q and the bending moment M can be expressed by the corresponding deformations as

Qðx; tÞ ¼ lAGb ð3Þ

Mðx; tÞ ¼ EJ
oh
ox

ð4Þ

where b represents the shear angle, l shear factor, and E and G the Young�s and shear moduli of the beam,
respectively.

The relationship between the bending and shear angles is given by

h ¼ ov
ox

þ b ð5Þ

Substitutions of Eqs. (3)–(5) into Eqs. (1) and (2), respectively, yield

lAG
o2v
ox2

� lAG
oh
ox

� kv ¼ qA€vvþ d _vv ð6Þ

Fig. 2. Forces of an infinitesimal foundation beam element.
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EJ
o2h
ox2

þ lAG
ov
ox

� ðlAGþ k1Þh ¼ qJ €hh þ d1 _hh ð7Þ

Written in the matrix form, Eqs. (6) and (7) can be expressed as

E0
o2u

ox2
þ ðET1 � E1Þ

ou

ox
� E2u ¼M0

o2u

ot2
þ E3

ou

ot
ð8Þ

where

u ¼ ½ v h �T ð9aÞ

E0 ¼
lGA 0
0 EJ

� �
ð9bÞ

E1 ¼
0 0

�lGA 0

� �
ð9cÞ

E2 ¼
k 0

0 lGAþ k1

� �
ð9dÞ

M0 ¼
qA 0

0 qJ

� �
ð9eÞ

E3 ¼
d 0

0 d1

� �
ð9fÞ

Eq. (8) turns out to be the equation that applies to the semi-infinite beam on viscoelastic foundation. It is

noted that both E0 and M0 are diagonal and positive definite matrixes.

The motion of the semi-infinite beam on viscoelastic foundation is assumed to start from rest. Therefore,

the initial conditions are

uðx; 0Þ ¼ ou

ot
ðx; 0Þ ¼ 0 ðxP x2Þ ð10Þ

The displacement and velocity on the boundary of the semi-infinite beam are, respectively,

uðx2; tÞ ¼ u0ðtÞ ð11Þ

ouðx2; tÞ
ot

¼ _uu0ðtÞ ð12Þ

where u0ðtÞ and _uu0ðtÞ are the transient responses of the finite beam region on the truncated boundary

obtained by the finite element method.

Now, the resultant forces corresponding to all the degrees of freedom of the boundary are addressed.

Recalling Eqs. (3)–(5), the resultant force vector on the boundary is written as

R ¼ �E0
ou

ox
� ET1 u ð13Þ

For the elastic wave propagation in a semi-infinite beam on viscoelastic foundation, a relationship among

displacement u0ðtÞ, velocity _uu0ðtÞ and resultant force RðtÞ on the boundary is needed. This requires the
derivative, ou=ox in Eq. (13), which must be represented by the corresponding responses of semi-infinite
beam on truncated boundary.
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3. The residual radiation method

The employment of the residual radiation method (Liu and Xu, 2002) is to transfer Eq. (8) into a linear

first-order ordinary differential equation by factorizing the partial differential equation and introducing a
set of residual radiation functions. Due to the positive definition of E0 andM0, Eq. (8) can be rewritten as

o2v0

ox2
� K2 o

2v0

ot2
¼ Ev0 þD

ov0

ox
þ F

ov0

ot
ð14Þ

where

v0 ¼ Nu ð15aÞ

N ¼ diagð
ffiffiffiffiffiffiffiffiffiffi
lGA

p
;

ffiffiffiffiffiffi
EJ

p
Þ ð15bÞ

K2 ¼ diag q
lG

;
q
E

� �
ð15cÞ

E ¼ diag k
lGA

;
lGAþ k1

EJ

� �
ð15dÞ

D ¼ 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lGA=EJ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lGA=EJ

p
0

� �
ð15eÞ

F ¼ diag d
lGA

;
d1
EJ

� �
ð15fÞ

Obviously, the left-hand side of Eq. (14) can be factorized as follows:

o

ox

�
� K

o

ot

�
o

ox

�
þ K

o

ot

�
v0 ¼ Ev0 þD

ov0

ox
þ F

ov0

ot
ð16Þ

The partial differential operators

o

ox
� K

o

ot
and

o

ox
þ K

o

ot

in Eq. (16) represent the incoming and outgoing waves, respectively. Introducing an auxiliary vector v1 into

Eq. (16) yields the following equations:

ov0

ox
þ K

ov0

ot
¼ v1 ð17Þ

ov1

ox
� K

ov1

ot
¼ Ev0 þDv1 �Hv�10 ð18Þ

where

H ¼ DK � F ð19Þ

v�j
i ¼ ojvi

otj
ðj > 0; i ¼ 0; 1; 2; . . .Þ ð20Þ

It is clear that Eq. (17) is similar to the radiation boundary conditions. If the function v0 satisfies the

standard wave equation, i.e., D ¼ 0, E ¼ 0 andH ¼ 0, then v1 ¼ 0, so that all the outgoing waves will travel
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through the artificial boundary without any residual. However, for elastic wave propagation in semi-infinite

beam, matrixes D, E and H do not vanish, the auxiliary function v1 exists in the systems, which represents

the residual radiation of function v0.

To obtain a higher-order accurate numerical solution, it is important to determine the first-order residual
function v1 accurately. Followed is an efficient method proposed to determine the lower residual functions

through the higher ones. As an example, the second order of radiation vector v2 is introduced to obtain v1 as

follows:

ov1

ox
þ R

ov1

ot
¼ v2 ð21Þ

where R ¼ rI2 is an introduced diagonal matrix, I2 is a 2-order identity matrix and parameter r is employed
to reduce the radiation residual, and can be evaluated r ¼ 1

2
ðK1 þ K2Þ for instance. Application of the

incoming partial differential operator ðo=oxÞ � Kðo=otÞ to Eq. (21) yields

o

ox

�
� K

o

ot

�
v2 ¼

o

ox

�
� K

o

ot

�
o

ox

�
þ R

o

ot

�
v1 ð22Þ

Substitution of Eq. (18) into Eq. (22) with exchange of operators yields

o

ox

�
� K

o

ot

�
v2 ¼

o

ox

�
þ R

o

ot

�
Ev0
�

þDv1 �Hv�10
�

ð23Þ

Obviously, the matrix R is an exchangeable matrix, that is, RE ¼ ER, RD ¼ DR and so forth. Hence,

accounting for Eq. (17), the first term in the right-hand side of Eq. (23) can be rewritten as

o

ox

�
þ R

o

ot

�
ðEv0Þ ¼ Ev1 þ EðR � KÞv�10 ð24Þ

Likewise, the third term in the right-hand side of Eq. (23) yields

o

ox

�
þ R

o

ot

�
ð�Hv�10 Þ ¼ �Hv�11 �HðR � KÞv�20 ð25Þ

Therefore, a pair of partial differential equations are obtained as

ov1

ox
þ R

ov1

ot
¼ v2 ð26Þ

ov2

ox
� K

ov2

ot
¼ Ev1 þ EðR � KÞv�10 þDv2 �Hv�11 �HðR � KÞv�20 ð27Þ

In the same way, the following equations with respect to the third residual radiation function v3 are ob-

tained:

ov2

ox
þ R

ov2

ot
¼ v3 ð28Þ

ov3

ox
� K

ov3

ot
¼ Ev2 þ EðR � KÞv�11 þ EðR � KÞ2v�20 þDv3 �Hv�12 �HðR � KÞv�21 �HðR � KÞ2v�30

ð29Þ

Likewise, the following general factorizing forms with respect to the ðnþ 1Þth residual radiation vnþ1 can be
obtained:
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ovn

ox
þ R

ovn

ot
¼ vnþ1 ðn ¼ 1; 2; . . . ;NÞ ð30Þ

ovnþ1

ox
� K

ovnþ1

ot
¼ E

Xn

i¼0
ðR
�

� KÞiv�i
n�i

�
�H

Xn

i¼0
ðR
�

� KÞiv�i�1
n�i

�
þDvnþ1 ðn ¼ 1; 2; . . . ;NÞ ð31Þ

where N is the highest order of the auxiliary function. The correctness of Eqs. (30) and (31) can be proven
using the inductive method.

Still is a difficulty to implement the above factorizing partial differential equations into any numerical

procedure due to the presentation of the spatial derivatives and the high-order temporal derivatives. The

spatial derivatives can be eliminated from the above equations by subtracting Eq. (18) from Eq. (21) as

follows:

ðR þ KÞ ov1
ot

¼ v2 � Ev0 �Dv1 þHv�10 ð32Þ

Similarly, the second ordinary differential equation can be obtained as

ðR þ KÞ ov2
ot

¼ v3 � Ev1 � EðR � KÞv�10 �Dv2 þHv�11 þHðR � KÞv�20 ð33Þ

Likewise, a general form of the ordinary differential equation can be written as

ðR þ KÞ ovn
ot

¼ vnþ1 � E
Xn�1
i¼0

ðR
�

� KÞiv�i
n�1�i

�
þH

Xn�1
i¼0

ðR
�

� KÞiv�i�1
n�1�i

�
�Dvn ðn ¼ 1; 2; . . . ;NÞ ð34Þ

To reduce the high-order temporal derivatives in the above ordinary differential equations, the notation v�j
i

in Eq. (20) is extended as

v
j
i ¼

Z sj

0

	 	 	
Z s2

0

Z s1

0

vi ds1 ds2 	 	 	 dsj ðjP 0; i ¼ 0; 1; 2; 3; . . .Þ ð35Þ

Using the above notions, Eq. (32) can be rewritten as

ðR þ KÞ ov1
ot

� ov12
ot

¼ �Ev0 �Dv1 þHv�10 ð36Þ

Integrating Eq. (33) with respect to time once, the second ordinary differential equation is expressed as

ðR þ KÞ ov
1
2

ot
� ov23

ot
¼ �Ev11 � EðR � KÞv0 �Dv12 þHv1 þHðR � KÞv�10 ð37Þ

Likewise, integrating the nth Eq. (34) with respect to time n� 1 times leads to the follows:

ðR þ KÞ ov
n�1
n

ot
� ovnnþ1

ot

¼ �E
Xn�1
i¼0

ðR
�

� KÞivn�1�i
n�1�i

�
þH

Xn�1
i¼0

ðR
�

� KÞivn�i�2
n�1�i

�
�Dvn�1n ðn ¼ 1; 2; . . . ;NÞ ð38Þ

Eqs. (36)–(38) are all first-order temporal ordinary differential equations for the related residual radiation

functions. The unknown functions are v1; v
1
2; v

2
3; . . . ; v

n�1
n and v11; v

2
2; v

3
3; . . . ; v

n
n, while the known conditions

are v0 and _vv0, which are expressed in Eqs. (10)–(12), on the truncated boundary x ¼ x2. Hence, Eqs. (36)–
(38) can be rewritten in the matrix form as

3218 T. Liu, Q. Li / International Journal of Solids and Structures 40 (2003) 3211–3228



A0 0

0 I

� �
w1
w2

� �
t

¼ A1 A2
I 0

� �
w1
w2

� �
þ q

0

� �
ð39Þ

where w1 ¼ ½v1 v12 v23 . . . vn�1n �T and w2 ¼ ½v11 v22 v33 . . . vnn �
T
. Matrixes A0, A1, A2 and vector q

have the following block forms, respectively:

A0 ¼

R þ K �I
R þ K �I

R þ K �I
: : :

R þ K

2
66664

3
77775

n
n

ð40aÞ

A1 ¼

�D
HðR � KÞ �D
HðR � KÞ2 HðR � KÞ �D
HðR � KÞ3 HðR � KÞ2 HðR � KÞ �D

: : : : : : : :
	 	 	

HðR � KÞn�3 HðR � KÞn�4 	 	 	 HðR � KÞ �D
HðR � KÞn�2 HðR � KÞn�3 	 	 	 HðR � KÞ2 HðR � KÞ �D

2
66666666664

3
77777777775

n
n

ð40bÞ

A2 ¼

0

�E 0

EðR � KÞ1 �E 0

EðR � KÞ2 EðR � KÞ �E 0

: : : : : : : :
	 	 	

EðR � KÞn�4 EðR � KÞn�5 	 	 	 EðR � KÞ �E 0

EðR � KÞn�3 EðR � KÞn�4 	 	 	 EðR � KÞ2 EðR � KÞ1 �E 0

2
66666666664

3
77777777775

n
n

ð40cÞ

q ¼

�Ev0 þH _vv0
�EðR � KÞv0 þHðR � KÞ _vv0
�EðR � KÞ2v0 þHðR � KÞ2 _vv0

	 	 	
�EðR � KÞn�1v0 þHðR � KÞn�1 _vv0

2
66664

3
77775

n

ð40dÞ

Furthermore, the linear system (39) can be rewritten as the following standard ordinary differential

equation:

dw

dt
¼ Awþ w0 ð41Þ

where

w ¼ ½w1 w2 �T2n ð42aÞ

w0 ¼ A�1
0 q 0

� �T
2n

ð42bÞ

A ¼ A�1
0 A1 A�1

0 A2
I 0

� �
2n
2n

ð42cÞ
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From Eq. (10), the initial condition for w is obtained as

w ¼ ½ 0 0 	 	 	 0 �T2n ð43Þ
Using the explicit second-order Adams–Bashforth algorithm (James et al., 1993), the numerical solution to

Eq. (41) can be expressed as follows:

wðtkþ1Þ ¼ wðtkÞ þ
Dt
2
½3ðAwðtkÞ þ w0ðtkÞÞ � ðAwðtk�1Þ þ w0ðtk�1ÞÞ� ð44Þ

where Dt is the time step, k is the number of time step and tk ¼ kDt.
Once the residual radiation functions are solved from Eq. (44), then Eq. (17) can be rewritten as

ov0

ox
ðtkÞ ¼ �K

ov0

ot
ðtkÞ þ v1ðtkÞ ð45Þ

Multiplying the above expression by matrix N and substituting it into Eq. (13), the force at the boundary of

semi-infinite foundation beam can be obtained as follows:

RðtkÞ ¼ C0
ou

ot
ðtkÞ � ET1 uðtkÞ �Nv1ðtkÞ ð46Þ

where C0 ¼ NKNT is a symmetric and positive definite matrix. Eq. (46) is the relationship between the force
and displacement at the boundary, i.e., the discrete artificial boundary conditions for transient elastic wave

propagation in the semi-infinite beam on viscoelastic foundation. Obviously, the above boundary condition

is local in time since it only contains the displacement and velocity during two previous successive time
instants (see Eq. (44)).

If only the first term in the right-hand side of Eq. (46) is considered, the viscous damping boundary

condition is obtained as follows:

RðtkÞ ¼ C0
ou

ot
ðtkÞ ð47Þ

4. Finite element formulation

The proposed high-order accurate artificial boundary condition can be straightforwardly implemented in

the finite element analysis (Thompson and Huan, 2000). Traditionally, the finite element discretized for-

mulation of the Timoshenko beam on viscoelastic foundation can be expressed as

M€yyþ C _yyþ Ky ¼ f ð48Þ
where M is the global mass matrix, C the global viscous and radial damping matrix, K the global stiffness

matrix, and f the global force vector due to the artificial boundary and other contributions. €yy, _yy and y are
the global acceleration, velocity and displacement vectors, respectively. These global property matrixes and

vectors can be obtained by assembling all of the element matrixes (Przemieniecki, 1968) and vectors in-

cluding those of the artificial boundary conditions. The element property matrixes can be expressed as

Me ¼ diag qAl=2 qJl=2 qAl=2 qJl=2ð Þ ð49aÞ

Cef ¼ diag dl=2 d1l=2 dl=2 d1l=2ð Þ ð49bÞ

Keb ¼
EJ

l3ð1þ UÞ

12 6l �12 6l
6l ð4þ UÞl2 �6l ð2� UÞl2
�12 �6l 12 �6l
6l ð2� UÞl2 �6l ð4þ UÞl2

2
664

3
775 ð49cÞ
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Kef ¼ diag kl=2 k1l=2 kl=2 k1l=2ð Þ ð49dÞ

where l is the length of a beam element and U ¼ ð12EJÞ=ðlGAl2Þ, Cef is the viscous damping matrix of a
foundation element, Keb and K

e
f are the stiffness matrixes of a Timoshenko beam element and a elastic

foundation element, respectively.

Due to that the high-order accurate boundary condition needs both the displacements and velocities on

the truncated boundary, the dynamic equation (48) is rewritten in a form of state space as follows:

_yy
€yy

� �
¼ 0 I

�M�1K �M�1C

� �
y
_yy

� �
þ 0

M�1f

� �
ð50Þ

This linear system, Eq. (50), can be solved by the same numerical method as Eq. (41). Furthermore, Eq. (50)

may be decoupled with Eq. (41) on the artificial boundary, it is possible to solve Eqs. (41) and (50) in an

alternative manner, until the final time instant of interest is reached in the finite element analysis.

5. Numerical examples

The performance of the proposed high-order accurate artificial boundary condition is illustrated through

some examples for time-dependent elastic wave propagation problems in infinite and semi-infinite beam on

viscoelastic foundation. The first one is a semi-infinite homogeneous beam overlying on the viscoelastic

foundation, and the second is a semi-infinite beam on the viscoelastic foundation with partly inhomo-

geneous properties. Both examples are performed in time domain in order to illustrate the efficiency of the

present method. The exact solutions used for comparison are obtained from the consistency boundary
method (Kausel et al., 1975).

5.1. A semi-infinite homogeneous beam on viscoelastic foundation

The transient response of a homogeneous beam on viscoelastic foundation (as shown in Fig. 3) is an-

alyzed using the proposed high-order accurate nonreflecting boundary condition. Followed is the material

parameters, A ¼ 0:25
 1:0 m2, I ¼ 0:02083 m4, E ¼ 4:29
 105 kNm2, c ¼ 0:2, q ¼ 2:35
 103 kg/m3, k0 ¼
3:388
 104 kN/m2, k10 ¼ 4:423
 104 kN, dr ¼ 282 kN s/m2, dr1 ¼ 93 kN s, a ¼ 1:0 and n ¼ 0:1. The k0 and
k10 are the standard stiffness of the foundation, while stiff ratio is defined as a ¼ k=k0 ¼ k1=k10. Likewise, the
dr and dr1 are the critical damps of the foundation and damping ratio is defined as n ¼ d=dr ¼ d1=dr1. The
corresponding dilatation and shear wave velocities are cp ¼ 2961 m/s and cs ¼ 1745 m/s, respectively. For
the purpose of demonstrating the correctness and accuracy of the current truncated boundary condition,

the system is considered under an in-plane square sine impulse disturbance (deflection or rotation) as

follows:

f ðT Þ ¼ sin2ðpT=2Þ 06 T 6 2:0
0:0 T P 2:0

�
ð51Þ

where T ¼ cst=h is dimensionless time, and h the height of beam.

vθ
∞

Fig. 3. Semi-infinite Timoshenko beam on viscoelastic foundation.
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The time step in the analysis was chosen in such a way that the least error was obtained in approximating

the loading function, also the time step must be less than the corresponding maximum value, which satisfies

the requirement for stable integral conditions. In this particular example, the dimensionless time step used

is 0.005. The total integrating time is 10.
The first case considered in this subsection is to investigate the convergence of the high-order accurate

nonreflecting boundary condition. The number of residual radiation function in the following analysis is

used as n ¼ 5, 10 and 20, respectively. The input deflection or rotation at the boundary is prescribed by Eq.
(51), i.e., when the deflection is given, the rotation is zero and vice versa. The resultant forces at the

boundary of the semi-infinite beam are shown in Fig. 4 for various cases. Obviously the longer is the

numerical simulation time, the more the auxiliary residual functions are required to obtain a high accurate

solution. It can be seen that the numerical solution has excellent agreement with the exact solution in the

case of n ¼ 20. Nevertheless, this indicates that the present artificial boundary condition is a very accurate
artificial boundary for solving elastic wave propagation problems in a foundation beam, if the order of the

residual radiation function used is high enough in the numerical analysis.

Furthermore, the finite element method with the present high-order accurate boundary condition is used

to solve the dynamic responses in semi-infinite foundation beam subjected to impulse loads. The finite

element model for foundation beam is shown in Fig. 5, whose element size is l ¼ 1 m. The material
parameters are exactly the same as those in the first case. In order to examine the effect of location of the

truncated boundary on the numerical results, four different region sizes, namely L ¼ 5, 10, 15, and 30 m, are

(a) (b)

(d)(c)

Fig. 4. Comparison of the numerical solutions with the exact solutions due to the different order of residual radiation functions

(n ¼ 5; 10; 20): (a) shear force at boundary due to lateral deflection at boundary; (b) bending moment at boundary due to lateral
deflection at boundary; (c) shear force at boundary due to rotation at boundary; (d) bending moment at boundary due to rotation at

boundary.
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considered in the finite element analysis. The foundation beam is subjected to an impulse loads described in

Eq. (51). Fig. 6 shows the effect of the artificial boundary locations on the dynamic responses at the point A.

The numerical solutions resulting from both the free boundary conditions and fixed boundary conditions

on the truncated boundary are also shown in the corresponding figures (marked by (F) and (F0)). It is

obvious that even though the size of beam modeled by the finite element is very small, a very accurate

numerical solution can be obtained with the high-order accurate boundary conditions (marked by (H)).

However, there exist significant differences between the results of the free boundary conditions and those of
the high-order boundary conditions imposed on the truncated boundary, while there exists a consistency

between the results of a large size of finite element model with the fixed boundary conditions and those of

B

A

0.25 x 1.0

Free BC

Q or M

Truncated

boundary

L5 m

Viscoelastic foundation

Beam
∞

Fig. 5. Finite element model for a semi-infinite homogeneous Timoshenko beam on viscoelastic foundation.

ϑ
ϑ

(a) (b)

(d)(c)

Fig. 6. Effect of truncated boundary location on the response of beam subjected to impulse load (F: free boundary conditions; F0: fixed

boundary conditions; H: high-order accurate boundary conditions): (a) deflection at node A due to lateral force at node B; (b) rotation

at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation at node A due to

bending moment at node B.
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the high-order boundary conditions imposed on the truncated boundary. This further indicates that the

proposed nonreflecting artificial boundary is accurate enough to simulate the elastic wave propagation
problem in infinite beam on viscoelastic foundation.

5.2. A partly inhomogeneous semi-infinite beam on viscoelastic foundation

A partly inhomogeneous semi-infinite beam with different thickness overlying on the viscoelastic

foundation is shown in Fig. 7. The inhomogeneous character makes it difficulty to get an analytical solution

L

C

B

Truncated

boundary

A

0.3 x 1.0 0.25 x 1.0

Free BC

Q or M

5m5 m

Viscoelastic foundation

Beam
∞

Fig. 7. Finite element model for a semi-infinite inhomogeneous Timoshenko beam on viscoelastic foundation.

ϑ

(a) (b)

(c) (d)

Fig. 8. Effects of viscous damping on responses of the beam subjected to an impulse load: (a) deflection at node A due to lateral force at

node B; (b) rotation at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation at

node A due to bending moment at node B.
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(Felszeghy, 1996a,b). However, there is no difference between the methods for the inhomogeneous foun-

dation beam problem and the aforementioned homogeneous problem when using the current proposed

numerical method. The truncated boundary is imposed on the bi-material interface of the inhomogeneous

foundation beam. The finite region is modeled by finite element with size of 1 m, while the semi-infinite
homogeneous part is represented by high-order accurate boundary condition. Parameters used in finite

element model are: A ¼ 0:3
 1:0 m2, I ¼ 0:025 m4, E ¼ 4:29
 105 kNm2, c ¼ 0:2, q ¼ 2:35
 103 kg/m3,

k0 ¼ 4:066
 104 kN/m2, k10 ¼ 5:307
 104 kN, dr ¼ 339 kN s/m2, dr1 ¼ 112 kN s, a ¼ 1:0, those for the
semi-infinite homogeneous foundation beam are the same as in the first example.

The first case considered in this subsection is to examine the effect of the viscous damping of foundation

on the numerical results. Four damping values, n ¼ 0:0, 0.2, 0.5 and 1.0, are considered in the finite element
analysis. The system is still subjected to the impulse load described in Eq. (51). The time step and the

integrating time used are the same as those in the previous numerical example. Fig. 8 shows the effect of the
viscous damping on the transient responses of the inhomogeneous semi-infinite foundation beam. It is clear

that the damping obviously affects the transient response of the system. This does demonstrate that the

current high-order nonreflecting artificial boundary condition is very effective for solving elastic wave

propagation problems in the inhomogeneous infinite beam on viscoelastic foundation.

Alternatively, with a fixed viscous damping (n ¼ 0:2), four values of a ¼ 0:1; 1:0; 10; 50 are used to ex-
amine the effect of the stiffness of foundation on the numerical results. Fig. 9 shows the effect of the stiffness

of foundation on the transient responses of the inhomogeneous semi-infinite foundation beam. Clearly, the

α
α
α
α

α
α
α
α

α
α
α
α

α
α
α
α

ϑ
ϑ

(a) (b)

(d)(c)

Fig. 9. Effects of foundation stiffness on responses of the beam subjected to an impulse load: (a) deflection at node A due to lateral force

at node B; (b) rotation at node A due to lateral force at node B; (c) deflection at node A due to bending moment at node B; (d) rotation

at node A due to bending moment at node B.
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related numerical results show that the foundation stiffness have significant effects on the transient res-

ponses of the semi-infinite foundation beam, in particular, the soft foundation case.

Finally, the inhomogeneous semi-infinite foundation beam subjected to a resonant load is considered to

obtain the long time response of the system. The following resonant load is used in the corresponding
numerical analysis:

f ðT Þ ¼ sinðpT Þ 06 T 6 40 ð52Þ

Except for a ¼ 0:1 and n ¼ 0:2, the other material parameters are exactly the same as those in the previous
cases of this subsection. The time step and the integrating time used are the same as those in the previous
numerical example. Numerical results at different locations are compared with the results, which are ob-

tained by a large size of foundation beam mode with, L ¼ 25 m and the fixed truncated boundary condition
(marked by (C)). Fig. 10 shows the corresponding responses at locations A and C of the foundation beam.

It can be observed that even for the resonant load case, the numerical results from the proposed method still

agree well with those by a large conventional finite element model with Dirichlet boundary conditions. This

demonstrates the usefulness and accuracy of the present high-order accuracy boundary conditions in

dealing with elastic wave propagation problems in semi-infinite foundation beam.

(a) (b)

(d)(c)

Fig. 10. Long time responses of the foundation beam subjected to a resonant load (H: high-order accurate boundary conditions;

C: conventional finite element method): (a) deflections at node A and C due to lateral resonant force at node B; (b) rotations at node A

and C due to lateral resonant force at node B; (c) deflections at node A and C due to resonant bending moment at node B; (d) rotation

at node A and C due to resonant bending moment at node B.
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6. Conclusions

In this paper, a high-order nonreflecting artificial boundary condition is proposed to simulate the

transient elastic wave propagation in an infinite beam on viscoelastic foundation. Both the operator
splitting technique and residual radiation function are used to derive the high-order accurate artificial

boundary conditions in a rigorously mathematical manner. Those complicated convolution calculations

commonly used in other analytical and numerical methods can be avoided in the current artificial boundary

condition due to neither the fundamental solution nor the impulse response function is needed.

The proposed high-order accurate artificial boundary condition is local in time for the elastic wave

problems in foundation beam. It can be combined easily with finite element method to deal with elastic

wave propagation problems in infinite beam including viscoelastic foundation, because the context of the

artificial boundary condition is the numerical method. The performance of the proposed high-order
nonreflecting artificial boundary is illustrated by some transient elastic wave propagation problems in the

semi-infinite beam with inclusion of viscoelastic foundation. The results support that the high-order

nonreflecting artificial boundary condition proposed in this paper is accurate for solving elastic wave

propagation problems of infinite (or semi-infinite) beams on viscoelastic foundation.
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